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Distribution System Line Models – Overview
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Highlights of This Section: there are three line segment models
Exact line segment model

Modified line segment model (neglecting shunt admittance of exact model)



Distribution System Line Models – Overview
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Approximate line segment model (in sequence domain)

• In this section, we will study how to derive the above three models (from KVL 
and KCL), i.e., how to derive forward-backward sweep models. 

• Here we will assume [Zabc] and [Yabc] are known. How to compute the phase 
impedance and phase admittance matrices using the actual phasing of the line and 
the correct spacing between conductors are discussed in modeling series 
impedance and shunt admittance.



Exact Line Segment Model

5

ECpE Department

The exact model of a three-phase, two-phase, or single-phase overhead 
or underground line is shown in Fig.1.

Fig.1 Three-phase line segment model
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Exact Line Segment Model
• When a line segment is two phase (V phase) or single phase, some of the 

impedance and values will be zero. Note that in all cases the phase impedance 
and phase admittance matrices were 3 × 3. Rows and columns of zeros for the 
missing phases represent two-phase and single-phase lines. Therefore, one set 
of equations can be developed to model all overhead and underground line 
segments. 

• The values of the impedances and admittances in Fig.1 represent the total 
impedances and admittances for the line segment. That is, the phase 
impedance/admittance matrix has been multiplied by the length of the line 
segment. 

Fig.1 Three-phase line segment model
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Exact Line Segment Model
For the line segment of Fig.1, the equations relating the input (node n) 
voltages and currents to the output (node m) voltages and currents are 
developed as follows.
Kirchhoff's current law applied at node m is represented by

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐

=
𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑚𝑚

+ 1
2
�
𝑌𝑌𝑎𝑎𝑎𝑎 𝑌𝑌𝑎𝑎𝑏𝑏 𝑌𝑌𝑎𝑎𝑐𝑐
𝑌𝑌𝑏𝑏𝑎𝑎 𝑌𝑌𝑏𝑏𝑏𝑏 𝑌𝑌𝑏𝑏𝑐𝑐
𝑌𝑌𝑐𝑐𝑎𝑎 𝑌𝑌𝑐𝑐𝑏𝑏 𝑌𝑌𝑐𝑐𝑐𝑐

𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑚𝑚

Fig.1 Three-phase line segment model

(1)
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Exact Line Segment Model
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐

=
𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑚𝑚

+ 1
2
�
𝑌𝑌𝑎𝑎𝑎𝑎 𝑌𝑌𝑎𝑎𝑏𝑏 𝑌𝑌𝑎𝑎𝑐𝑐
𝑌𝑌𝑏𝑏𝑎𝑎 𝑌𝑌𝑏𝑏𝑏𝑏 𝑌𝑌𝑏𝑏𝑐𝑐
𝑌𝑌𝑐𝑐𝑎𝑎 𝑌𝑌𝑐𝑐𝑏𝑏 𝑌𝑌𝑐𝑐𝑐𝑐

�
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑚𝑚

In condensed form Equation (1) becomes

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

Kirchhoff's voltage law applied to the model gives
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑛𝑛

=
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑚𝑚

+
𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑏𝑏 𝑍𝑍𝑎𝑎𝑐𝑐
𝑍𝑍𝑏𝑏𝑎𝑎 𝑍𝑍𝑏𝑏𝑏𝑏 𝑍𝑍𝑏𝑏𝑐𝑐
𝑍𝑍𝑐𝑐𝑎𝑎 𝑍𝑍𝑐𝑐𝑏𝑏 𝑍𝑍𝑐𝑐𝑐𝑐

�
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐

In condensed form Equation (3) becomes

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐

(1)

(2)

(3)

(4)



9

ECpE Department

Exact Line Segment Model
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 = 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 1

2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (2)

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (4)
Substituting Equation (2) into Equation (4),

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (5)

Collecting terms,

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= [𝑢𝑢] + 1
2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+ 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (6)

where

𝑢𝑢 =
1 0 0
0 1 0
0 0 1

(7)

Equation (6) is of the general form
𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛=[𝑎𝑎] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+ 𝑏𝑏 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (8)
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Exact Line Segment Model

where
𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛=[𝑎𝑎] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+ 𝑏𝑏 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (8)

𝑎𝑎 = [𝑢𝑢] +
1
2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 (9)

𝑏𝑏 = 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 (10)
The input current to the line segment at node n is

𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑛𝑛

=
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐

+ 1
2
�
𝑌𝑌𝑎𝑎𝑎𝑎 𝑌𝑌𝑎𝑎𝑏𝑏 𝑌𝑌𝑎𝑎𝑐𝑐
𝑌𝑌𝑏𝑏𝑎𝑎 𝑌𝑌𝑏𝑏𝑏𝑏 𝑌𝑌𝑏𝑏𝑐𝑐
𝑌𝑌𝑐𝑐𝑎𝑎 𝑌𝑌𝑐𝑐𝑏𝑏 𝑌𝑌𝑐𝑐𝑐𝑐

�
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑛𝑛

(11)

In condensed form, Equation (11) becomes

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 + 1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 (12)
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Exact Line Segment Model

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 + 1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 (12)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 = 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (2)

Substitute Equation (2) into Equation (12):

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 1

2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 (13)

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= [𝑢𝑢] + 1
2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+ 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (6)

Substitute Equation (6) into Equation (13):

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

+
1
2
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 [𝑢𝑢] +

1
2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

(14)

Collecting terms in Equation (14),
𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 + 1

4
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+ [𝑢𝑢] + 1

2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

(15)
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Exact Line Segment Model
𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛= 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 + 1

4
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+ [𝑢𝑢] + 1

2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

(15)
Equation (15) is of the form

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛=[𝑐𝑐] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+[𝑑𝑑] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (16a)
where

𝑐𝑐 = 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 +
1
4
� 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 (17)

𝑑𝑑 = [𝑢𝑢] +
1
2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 (18)

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛=[𝑎𝑎] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+ 𝑏𝑏 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (8)

Equations (8) and (16) can be put into partitioned matrix form:
𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛
𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛

=
[𝑎𝑎] [𝑏𝑏]
[𝑐𝑐] [𝑑𝑑] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚
(19)

Backward 
sweep equation
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Exact Line Segment Model
𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛
𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛

=
[𝑎𝑎] [𝑏𝑏]
[𝑐𝑐] [𝑑𝑑] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚
(19)

Equation (19) is very similar to the equation used in transmission line analysis when 
the A, B, C, D parameters have been defined [1]. In the case here the a, b, c, d 
parameters are 3 × 3 matrices rather than single variables and will be referred to as the 
“generalized line matrices.”
Equation (19) can be turned around to solve for the voltages and currents at node m in 
terms of the voltages and currents at node n:

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚
𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

=
[𝑎𝑎] [𝑏𝑏]
[𝑐𝑐] [𝑑𝑑]

−1
� 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛
(20)

The inverse of the a, b, c, d matrix is simple because the determinant is

[𝑎𝑎] � 𝑑𝑑 − [𝑏𝑏] � 𝑐𝑐 = 𝑢𝑢 (21)

[1] Glover, J.D. and Sarma, M., Power System Analysis and Design, 2nd edn., PWS Publishing Co., Boston, MA, 1995.
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Exact Line Segment Model
𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚
𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

=
[𝑎𝑎] [𝑏𝑏]
[𝑐𝑐] [𝑑𝑑]

−1
� 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛
(20)

[𝑎𝑎] � 𝑑𝑑 − [𝑏𝑏] � 𝑐𝑐 = 𝑢𝑢 (21)
Using the relationship of Equation (21), Equation (20) becomes

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚
𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

=
[𝑑𝑑] −[𝑏𝑏]
−[𝑐𝑐] [𝑎𝑎] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛
(22)

Since the matrix [a] is equal to the matrix [d], Equation (22) in expanded form 
becomes

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 = 𝑎𝑎  � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 − 𝑏𝑏  � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 (23)

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 = − 𝑐𝑐  � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 + 𝑑𝑑  � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 (24)
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Exact Line Segment Model
𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛=[𝑎𝑎] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + 𝑏𝑏 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (8)

Sometimes it is necessary to compute the voltages at node m as a function of the 
voltages at node n and the currents entering node m. This is useful in the ladder 
iterative technique, i.e., the forward sweep equation.
Solving Equation (8) for the bus m voltages gives

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚=[𝑎𝑎]−1� 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 − 𝑏𝑏 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛  (25)

Equation (25) is of the form

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚=[𝐴𝐴] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 − 𝐵𝐵 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (26)

where 𝐴𝐴 = [𝑎𝑎]−1 (27)
𝐵𝐵 = [𝑎𝑎]−1� 𝑏𝑏 (28)
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Exact Line Segment Model

𝑉𝑉𝑎𝑎𝑏𝑏
𝑉𝑉𝑏𝑏𝑐𝑐
𝑉𝑉𝑐𝑐𝑎𝑎 𝑚𝑚

=
1 −1 0
0 1 −1
−1 0 1

�
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑚𝑚

= 𝐷𝐷 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (29)

The line-to-line voltages are computed by

where

𝐷𝐷 =
1 −1 0
0 1 −1
−1 0 1

(30)

Because the mutual coupling between phases on the line segments is not equal, there will be 
different values of voltage drop on each of the three phases. As a result the voltages on a 
distribution feeder become unbalanced even when the loads are balanced. A common method 
of describing the degree of unbalance is to use the National Electrical Manufactures 
Association (NEMA) definition of voltage unbalance as given in Equation (31) [2].

𝑉𝑉𝑢𝑢𝑛𝑛𝑏𝑏𝑎𝑎𝑢𝑢𝑎𝑎𝑛𝑛𝑐𝑐𝑢𝑢 =
𝑀𝑀𝑎𝑎𝑀𝑀𝐼𝐼𝑀𝑀𝑢𝑢𝑀𝑀 𝐷𝐷𝐼𝐼𝐷𝐷𝐼𝐼𝑎𝑎𝐷𝐷𝐼𝐼𝐷𝐷𝐼𝐼 𝑓𝑓𝑓𝑓𝐷𝐷𝑀𝑀 𝐴𝐴𝐷𝐷𝐼𝐼𝑓𝑓𝑎𝑎𝐴𝐴𝐼𝐼

𝑉𝑉𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑔𝑔𝑢𝑢
� 100%

[2] ANSI/NEMA Standard Publication No. MG1-1978, National Electrical Manufactures Association, Washington, DC.
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Example 1

A balanced three-phase load of 6000 kVA, 12.47 kV, 0.9 
lagging power factor is being served at node m of a 10,000 ft 
three-phase line segment. The load voltages are rated and 
balanced 12.47 kV. The configuration and conductors of the 
line segment are those of Example 4.1. Determine the 
generalized line constant matrices [a], [b], [c], [d], [A], and 
[B]. Using the generalized matrices determine the line-to-
ground voltages and line currents at the source end (node n) 
of the line segment.
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Example 1
Solution
The phase impedance matrix and the shunt admittance matrix for the line segment are

[𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐] =
0.4576 + 𝑗𝑗𝑗.0780 0.1560 + 𝑗𝑗0.5017 0.1535 + 𝑗𝑗0.3849
0.1560 + 𝑗𝑗0.5017 0.4666 + 𝑗𝑗𝑗.0482 0.1580 + 𝑗𝑗0.4236
0.1535 + 𝑗𝑗0.3849 0.1580 + 𝑗𝑗0.4236 0.4615 + 𝑗𝑗1.0651

 ⁄Ω 𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼

𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 = 𝑗𝑗 � 376.9911 � 𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐 =
𝑗𝑗𝑗.6711 −𝑗𝑗𝑗.8362 −𝑗𝑗0.7033
−𝑗𝑗𝑗.8362 𝑗𝑗5.9774 −𝑗𝑗𝑗.1690
−𝑗𝑗0.7033 −𝑗𝑗𝑗.1690 𝑗𝑗5.3911

 ⁄𝜇𝜇𝑆𝑆 𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼

For the 10,000 ft line segment, the total phase impedance matrix and shunt admittance matrix 
are

[𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐] =
0.8667 + 𝑗𝑗𝑗.0417 0.2955 + 𝑗𝑗0.9502 0.2907 + 𝑗𝑗0.7290
0.2955 + 𝑗𝑗0.9502 0.8837 + 𝑗𝑗𝑗.9852 0.2992 + 𝑗𝑗0.8023
0.2907 + 𝑗𝑗0.7290 0.2992 + 𝑗𝑗0.8023 0.8741 + 𝑗𝑗2.0172

Ω

𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 =
𝑗𝑗𝑗𝑗.7409 −𝑗𝑗3.4777 −𝑗𝑗1.3322
−𝑗𝑗3.4777 𝑗𝑗11.3208 −𝑗𝑗2.2140
−𝑗𝑗1.3322 −𝑗𝑗2.2140 𝑗𝑗10.2104

𝜇𝜇𝑆𝑆
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𝑏𝑏 = [𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐] =
0.8667 + 𝑗𝑗𝑗.0417 0.2955 + 𝑗𝑗0.9502 0.2907 + 𝑗𝑗0.7290
0.2955 + 𝑗𝑗0.9502 0.8837 + 𝑗𝑗𝑗.9852 0.2992 + 𝑗𝑗0.8023
0.2907 + 𝑗𝑗0.7290 0.2992 + 𝑗𝑗0.8023 0.8741 + 𝑗𝑗2.0172

It should be noted that the elements of the phase admittance matrix are very small.
The generalized matrices computed according to Equations (9), (10), (17), and (18) are

𝑎𝑎 = [𝑢𝑢] + 1
2
� 𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐 =

1 0 0
0 1 0
0 0 1

[c]=
0 0 0
0 0 0
0 0 0

[d]=
1 0 0
0 1 0
0 0 1

[A]=
1 0 0
0 1 0
0 0 1

𝐵𝐵 = [𝑎𝑎]−1� 𝑏𝑏 =
0.8667 + 𝑗𝑗𝑗.0417 0.2955 + 𝑗𝑗0.9502 0.2907 + 𝑗𝑗0.7290
0.2955 + 𝑗𝑗0.9502 0.8837 + 𝑗𝑗𝑗.9852 0.2992 + 𝑗𝑗0.8023
0.2907 + 𝑗𝑗0.7290 0.2992 + 𝑗𝑗0.8023 0.8741 + 𝑗𝑗2.0172

Because the elements of the phase admittance matrix are so small, the [a], [A], and [d] matrices appear to 
be the unity matrix. 
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Example 1
If more significant figures are displayed, the 1,1 element of these matrices is

𝑎𝑎1,1 = 𝐴𝐴1,1 = 0.99999117 + 𝑗𝑗𝑗.00000395

Also, the elements of the [c] matrix appear to be zero. Again if more significant 
figures are displayed, the 1,1 term is

𝑐𝑐1,1 = −0.0000044134 + 𝑗𝑗𝑗.0000127144

The point here is that for all practical purposes the phase admittance matrix can be 
neglected. The magnitude of the line-to-ground voltage at the load is

𝑉𝑉𝐿𝐿𝐿𝐿 =
12470

3
= 7199.56

Selecting the phase a to ground voltage as reference, the line-to-ground voltage matrix 
at the load is 𝑉𝑉𝑎𝑎𝑔𝑔

𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑛𝑛

=
7199.56∠0

7199.56∠ − 120
7199.56∠120

 V
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𝐼𝐼 𝑚𝑚 =
6000

3 � 12.47
= 277.79

The magnitude of the load current is 

For a 0.9 lagging power factor the load current matrix is

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚=
277.79∠ − 25.84

277.79∠ − 145.84
277.79∠94.16

 A

The line-to-ground voltages at node n are computed to be

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛=[a] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+[b] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚=
7538.70∠1.57

7451.25∠ − 118.30
7485.11∠121.93

 V
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It is important to note that the voltages at node n are unbalanced even though the voltages and 
currents at the load (node m) are perfectly balanced. This is a result of the unequal mutual 
coupling between phases. The degree of voltage unbalance is of concern since, for example, the 
operating characteristics of a three-phase induction motor are very sensitive to voltage 
unbalance. Using the NEMA definition for voltage unbalance (Equation (29)), the voltage 
unbalance is given by

𝑉𝑉𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑔𝑔𝑢𝑢 =
𝑉𝑉𝑎𝑎𝑎𝑎 𝑛𝑛+ 𝑉𝑉𝑏𝑏𝑎𝑎 𝑛𝑛+ 𝑉𝑉𝑐𝑐𝑎𝑎 𝑛𝑛

3
= 7538.70+7451.25+7485.11

3
=7491.69

𝑉𝑉𝑑𝑑𝐼𝐼𝐷𝐷𝐼𝐼𝑎𝑎𝐷𝐷𝐼𝐼𝐷𝐷𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = 7538.70 − 7491.69 = 47.01

𝑉𝑉𝑢𝑢𝑛𝑛𝑏𝑏𝑎𝑎𝑢𝑢𝑎𝑎𝑛𝑛𝑐𝑐𝑢𝑢 = 47.01
7491.70

 �100%=0.6275%

Although this may not seem like a large unbalance, it does give an indication of how the unequal 
mutual coupling can generate an unbalance. It is important to know that NEMA standards require 
that induction motors be derated when the voltage unbalance exceeds 1.0%.
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Selecting rated line-to-ground voltage as base (7199.56) the per-unit voltages at bus n 
are

𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑛𝑛

= 1
7199.56

7538.70∠𝑗.57
7451.25∠ − 118.30

7485.11∠𝑗𝑗𝑗.93
=

1.0471∠𝑗.57
1.0350∠ − 118.30

1.0397∠𝑗𝑗𝑗.93
 p.u.

By converting the voltages to per unit, it is easy to see that the voltage drop by phase is 
4.71% for phase a, 3.50% for phase b, and 3.97% for phase c.
The line currents at node n are computed to be

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛=[c] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+[d] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚=
277.71∠ − 25.83

277.73∠ − 148.82
277.73∠94.17

 A

Comparing the computed line currents at node n to the balanced load currents at node 
m, a very slight difference is noted that is another result of the unbalanced voltages at 
node n and the shunt admittance of the line segment.
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Modified Line Model
It was demonstrated in Example 1 that the shunt admittance of an overhead line is so 
small that it can be neglected. Figure 2 shows the modified line segment model with the 
shunt admittance neglected.
When the shunt admittance is neglected, the generalized matrices become

𝑎𝑎 = [𝑢𝑢]
𝑏𝑏 = [𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐]
𝑐𝑐 = [0]

𝑑𝑑 = [𝑢𝑢]
𝐴𝐴 = [𝑢𝑢]
𝐵𝐵 = [𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐]

(32)
(33)
(34)

(35)
(36)
(37)

Fig.2 Modified line segment model
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Three-Wire Delta Line
If the line is a three-wire delta, then the voltage drops down the line must be in terms of the line-
to-line voltages and line currents. However, it is possible to use “equivalent” line-to-neutral 
voltages so that the equations derived to this point will still apply. Writing the voltage drops in 
terms of line-to-line voltages for the line in Figure 2 results in

𝑉𝑉𝑎𝑎𝑏𝑏
𝑉𝑉𝑏𝑏𝑐𝑐
𝑉𝑉𝑐𝑐𝑎𝑎 𝑛𝑛

=
𝑉𝑉𝑎𝑎𝑏𝑏
𝑉𝑉𝑏𝑏𝑐𝑐
𝑉𝑉𝑐𝑐𝑎𝑎 𝑚𝑚

 +
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑐𝑐

 −
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑐𝑐
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎

where
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑐𝑐

 =
𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎
𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎
𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎

 �
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐

(38)

(39)

Fig.2 Modified line segment model
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Three-Wire Delta Line
𝑉𝑉𝑎𝑎𝑏𝑏
𝑉𝑉𝑏𝑏𝑐𝑐
𝑉𝑉𝑐𝑐𝑎𝑎 𝑛𝑛

=
𝑉𝑉𝑎𝑎𝑏𝑏
𝑉𝑉𝑏𝑏𝑐𝑐
𝑉𝑉𝑐𝑐𝑎𝑎 𝑚𝑚

 +
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑐𝑐

 −
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑐𝑐
𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎

(40)
Expanding Equation (38) for the phase a–b,

𝑉𝑉𝑎𝑎𝑏𝑏𝑛𝑛 = 𝑉𝑉𝑎𝑎𝑏𝑏𝑚𝑚 +𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎 −𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏

(38)

but
𝑉𝑉𝑎𝑎𝑏𝑏𝑛𝑛 = 𝑉𝑉𝑎𝑎𝐼𝐼𝑛𝑛 − 𝑉𝑉𝑏𝑏𝐼𝐼𝑛𝑛 (41)𝑉𝑉𝑎𝑎𝑏𝑏𝑚𝑚 = 𝑉𝑉𝑎𝑎𝐼𝐼𝑚𝑚 − 𝑉𝑉𝑏𝑏𝐼𝐼𝑚𝑚

Substitute Equations (41) into Equation (40):
𝑉𝑉𝑎𝑎𝐼𝐼𝑛𝑛 − 𝑉𝑉𝑏𝑏𝐼𝐼𝑛𝑛 = 𝑉𝑉𝑎𝑎𝐼𝐼𝑚𝑚 −  𝑉𝑉𝑏𝑏𝐼𝐼𝑚𝑚 + 𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎 −𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏 (42)

Equation (42) can be broken into two parts in terms of “equivalent” line-to-neutral voltages:

𝑉𝑉𝑎𝑎𝐼𝐼𝑛𝑛 = 𝑉𝑉𝑎𝑎𝐼𝐼𝑚𝑚 + 𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑎𝑎 (43)𝑉𝑉𝑏𝑏𝐼𝐼𝑛𝑛 = 𝑉𝑉𝑏𝑏𝐼𝐼𝑚𝑚 + 𝐷𝐷𝑑𝑑𝑓𝑓𝐷𝐷𝑣𝑣𝑏𝑏

The conclusion here is that it is possible to work with “equivalent” line-to-neutral voltages in a 
three-wire delta line. This is very important since it makes the development of general 
analyses techniques the same for four-wire wye and three-wire delta systems.
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Computation of Neutral and Ground Current
The Kron reduction method was used to reduce the primitive impedance matrix to the 3 × 3 phase 
impedance matrix. Fig.3 shows a three-phase line with grounded neutral that is used in the Kron 
reduction. Note that the direction of the current flowing in the ground is shown in Fig.3.

Fig.3 Three-phase line with neutral and ground currents (Note the main differences between 
this figure and the modified line mode in Fig.2: (1) the impedances here are primitive 

impedances and neutral conductor is in the figure and (2) the impedances in Fig. 2 are phase 
impedances that have already considered neutral conductor effect  )
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Computation of Neutral and Ground Current
In the development of the Kron reduction method, Equation (44) defined the “neutral transform 
matrix” [tn]. 

𝐷𝐷𝑛𝑛 = − �̂�𝑧𝑛𝑛𝑛𝑛 −1 � �̂�𝑧𝑛𝑛𝑗𝑗 (44)
The matrices �̂�𝑧𝑛𝑛𝑛𝑛  and �̂�𝑧𝑛𝑛𝑗𝑗 are the partitioned matrices in the primitive impedance matrix. 
When the currents flowing in the lines have been determined, Equation (45) is used to compute 
the current flowing in the grounded neutral wire(s):

𝐼𝐼𝑛𝑛 = 𝐷𝐷𝑛𝑛 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (45)
In Equation (45), the matrix 𝐼𝐼𝑛𝑛 for an overhead line with one neutral wire will be a single 
element. However, in the case of an underground line consisting of concentric neutral cables or 
taped shielded cables with or without a separate neutral wire, 𝐼𝐼𝑛𝑛  will be the currents flowing 
in each of the cable neutrals and the separate neutral wire if present. Once the neutral current(s) 
has been determined, Kirchhoff's current law is used to compute the current flowing in ground:

𝐼𝐼𝑔𝑔 = −(𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐 + 𝐼𝐼𝐼𝐼1 + 𝐼𝐼𝐼𝐼2 + ⋯+ 𝐼𝐼𝐼𝐼𝑘𝑘) (46)
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Example 2
The line of Example 1 will be used to supply an unbalanced load at node m. Assume 
that the voltages at the source end (node n) are balanced three phase at 12.47 kV line 
to line. The balanced line-to-ground voltages are

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 =
7199.56∠0

7199.56∠ − 120
7199.56∠120

 V

The unbalanced currents measured at the source end are given by
𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑛𝑛

 =
249.97∠ − 24.5

277.56∠ − 145.8
305.54∠95.2

 A
Determine
•The line-to-ground and line-to-line voltages at the load end (node m) using the 
modified line model
•The voltage unbalance
•The complex powers of the load
•The currents flowing in the neutral wire and ground
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Example 2
Solution
The [A] and [B] matrices for the modified line model are

𝐴𝐴 = [𝑢𝑢] =
1 0 0
0 1 0
0 0 1

𝐵𝐵 = [𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐] =
0.8667 + 𝑗𝑗𝑗.0417 0.2955 + 𝑗𝑗0.9502 0.2907 + 𝑗𝑗0.7290
0.2955 + 𝑗𝑗0.9502 0.8837 + 𝑗𝑗𝑗.9852 0.2992 + 𝑗𝑗0.8023
0.2907 + 𝑗𝑗0.7290 0.2992 + 𝑗𝑗0.8023 0.8741 + 𝑗𝑗2.0172

 Ω

Since this is the modified line model, [Iabc]m is equal to [Iabc]n. Therefore
𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑚𝑚

 =
249.97∠ − 24.5

277.56∠ − 145.8
305.54∠9𝑗.2

 A

The line-to-ground voltages at the load end are

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 = 𝐴𝐴 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 − [𝐵𝐵] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚=
6942.53∠ − 1.47

6918.35∠ − 121.55
6887.71∠117.31

 V
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Example 2
The line-to-line voltage at the load end are

𝐷𝐷 =
1 −1 0
0 1 −1
−1 0 1

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 = 𝐷𝐷 � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚=
12,008∠28.4

12,025∠ − 92.2
11,903∠148.1

 V

For this condition, the average load voltage is

𝑉𝑉𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑔𝑔𝑢𝑢 = 6942.53+6918.35+6887.71
3

=6916.20

The maximum deviation from the average is on phase c so that

𝑉𝑉𝑑𝑑𝐼𝐼𝑓𝑓𝐼𝐼𝐷𝐷𝑎𝑎𝐷𝐷𝐼𝐼𝐷𝐷𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = 6887.71 − 6916.20 =28.49

𝑉𝑉𝑢𝑢𝑛𝑛𝑏𝑏𝑎𝑎𝑢𝑢𝑎𝑎𝑛𝑛𝑐𝑐𝑢𝑢 = 28.49
6916.20

 �100% =0.4119%
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Example 2
The complex powers of the load are

𝑆𝑆𝑎𝑎
𝑆𝑆𝑏𝑏
𝑆𝑆𝑐𝑐

 = 1
1000

 �
𝑉𝑉𝑎𝑎𝑔𝑔 � 𝐼𝐼𝑎𝑎∗

𝑉𝑉𝑏𝑏𝑔𝑔 � 𝐼𝐼𝑏𝑏∗

𝑉𝑉𝑐𝑐𝑔𝑔 � 𝐼𝐼𝑐𝑐∗
 =

1597.2 + 𝑗𝑗𝑗𝑗𝑗.8
1750.8 + 𝑗𝑗788.7
1949.7 + 𝑗𝑗792.0

𝑘𝑘𝑘𝑘 + 𝑗𝑗𝑘𝑘𝐷𝐷𝑎𝑎𝑓𝑓

The “neutral transformation matrix” from Example 4.1 is

[𝐷𝐷𝑛𝑛 ]= −0.4292 − 𝑗𝑗𝑗.1291 −0.4476 − 𝑗𝑗𝑗.1373 −0.4373 − 𝑗𝑗𝑗.1327

The neutral current is

[𝐼𝐼𝑛𝑛 ]= [𝐷𝐷𝑛𝑛 ] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 = 26.2∠ − 29.5

The ground current is

𝐼𝐼𝑔𝑔 = −(𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐 + 𝐼𝐼𝑛𝑛) = 32.5∠ − 77.6
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Approximate Line Segment Model
• The approximate line model can be developed by applying the “reverse impedance 

transformation” from symmetrical component theory.
• Using the known positive and zero sequence impedances, the “sequence impedance 

matrix” is given by (See Chapter 4, Kersting)

[𝑍𝑍𝑠𝑠𝑢𝑢𝑠𝑠] =
𝑍𝑍0 0 0
0 𝑍𝑍+ 0
0 0 𝑍𝑍+

(47)

• Note that this assumption means lines are assumed to be transposed, that is why 
this model is called “approximate” model.

• The “reverse impedance transformation” results in the following approximate 
phase impedance matrix:

[𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚] = [𝐴𝐴𝑠𝑠] � [𝑍𝑍𝑠𝑠𝑢𝑢𝑠𝑠] � [𝐴𝐴𝑠𝑠]−1

[𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚] =
1
3
�

(2𝑍𝑍++𝑍𝑍0) (𝑍𝑍0−𝑍𝑍+) (𝑍𝑍0−𝑍𝑍+)
(𝑍𝑍0−𝑍𝑍+) (𝑗𝑍𝑍++𝑍𝑍0) (𝑍𝑍0−𝑍𝑍+)
(𝑍𝑍0−𝑍𝑍+) (𝑍𝑍0−𝑍𝑍+) (𝑗𝑍𝑍++𝑍𝑍0)

(48)

(49)



34

ECpE Department

Approximate Line Segment Model
Notice that the approximate impedance matrix is characterized by the three diagonal 
terms being equal and all mutual terms being equal. This is the same result that is 
achieved if the line is assumed to be transposed. Applying the approximate 
impedance matrix the voltage at node n is computed to be

𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑛𝑛

=
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑚𝑚

+ 1
3
�

(2𝑍𝑍++𝑍𝑍0) (𝑍𝑍0−𝑍𝑍+) (𝑍𝑍0−𝑍𝑍+)
(𝑍𝑍0−𝑍𝑍+) (𝑗𝑍𝑍++𝑍𝑍0) (𝑍𝑍0−𝑍𝑍+)
(𝑍𝑍0−𝑍𝑍+) (𝑍𝑍0−𝑍𝑍+) (𝑗𝑍𝑍++𝑍𝑍0)

 �
𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑚𝑚

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 = 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 + [𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚

In condensed form, Equation (50) becomes

(51)
Note that Equation (51) is of the form

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 = [𝑎𝑎] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+[𝑏𝑏] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 (52)
where

𝐴𝐴 = 𝑢𝑢𝐼𝐼𝐼𝐼𝐷𝐷𝑦𝑦 𝑀𝑀𝑎𝑎𝐷𝐷𝑓𝑓𝐼𝐼𝑀𝑀
𝑏𝑏 = [𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚]

(50)
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Approximate Line Segment Model

𝑉𝑉𝑎𝑎𝐴𝐴𝑛𝑛 = 𝑉𝑉𝑎𝑎𝐴𝐴𝑚𝑚 + 1
3
� (𝑗𝑍𝑍++𝑍𝑍0)𝐼𝐼𝑎𝑎 + (𝑍𝑍0−𝑍𝑍+)𝐼𝐼𝑏𝑏 + (𝑍𝑍0+𝑍𝑍+)𝐼𝐼𝑐𝑐

+(𝑍𝑍0−𝑍𝑍+)𝐼𝐼𝑎𝑎 − (𝑍𝑍0−𝑍𝑍+)𝐼𝐼𝑎𝑎
= 𝑉𝑉𝑎𝑎𝐴𝐴𝑚𝑚 + 1

3
� (3𝑍𝑍+)𝐼𝐼𝑎𝑎 + (𝑍𝑍0−𝑍𝑍+)(𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐)

= 𝑉𝑉𝑎𝑎𝐴𝐴𝑚𝑚 +𝑍𝑍+ � 𝐼𝐼𝑎𝑎 + (𝑍𝑍0−𝑍𝑍+)
3

� (𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐)

(53)

Equation (50) can be expanded and an equivalent circuit for the approximate line 
segment model can be developed. Solving Equation (50) for the phase a voltage at 
node n results in

(50)
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑛𝑛

=
𝑉𝑉𝑎𝑎𝑔𝑔
𝑉𝑉𝑏𝑏𝑔𝑔
𝑉𝑉𝑐𝑐𝑔𝑔 𝑚𝑚

+ 1
3
�

(2𝑍𝑍++𝑍𝑍0) (𝑍𝑍0−𝑍𝑍+) (𝑍𝑍0−𝑍𝑍+)
(𝑍𝑍0−𝑍𝑍+) (𝑗𝑍𝑍++𝑍𝑍0) (𝑍𝑍0−𝑍𝑍+)
(𝑍𝑍0−𝑍𝑍+) (𝑍𝑍0−𝑍𝑍+) (𝑗𝑍𝑍++𝑍𝑍0)

 �
𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑚𝑚

Modify Equation (53) by adding and subtracting the term (Z0 − Z+)Ia and then 
combining terms and simplifying:

𝑉𝑉𝑎𝑎𝐴𝐴𝑛𝑛 = 𝑉𝑉𝑎𝑎𝐴𝐴𝑛𝑛 + 1
3
� (𝑗𝑍𝑍++𝑍𝑍0)𝐼𝐼𝑎𝑎 + (𝑍𝑍0−𝑍𝑍+)𝐼𝐼𝑏𝑏 + (𝑍𝑍0+𝑍𝑍+)𝐼𝐼𝑐𝑐

(54)
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Approximate Line Segment Model

𝑉𝑉𝑏𝑏𝐴𝐴𝑛𝑛 = 𝑉𝑉𝑏𝑏𝐴𝐴𝑚𝑚 +𝑍𝑍+ � 𝐼𝐼𝑏𝑏 + (𝑍𝑍0−𝑍𝑍+)
3

� (𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐) (55)

The same process can be followed in expanding Equation (50) for phases b and c. The final 
results are

𝑉𝑉𝑐𝑐𝐴𝐴𝑛𝑛 = 𝑉𝑉𝑐𝑐𝐴𝐴𝑚𝑚 +𝑍𝑍+ � 𝐼𝐼𝑐𝑐 + (𝑍𝑍0−𝑍𝑍+)
3

� (𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐) (56)
Fig.4 illustrates the approximate line segment model.

Fig.4 Approximate line segment model
Fig.4 shows a simple equivalent circuit for the line segment since no mutual coupling has to be 
modeled. It must be understood, however, that the equivalent circuit can only be used when 
transposition of the line segment has been assumed.
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Example 3

The line segment of Example 1 is to be analyzed assuming that the line 
has been transposed. In Example 1, the positive and zero sequence 
impedances were computed to be

𝑧𝑧+ =0.3061 +𝑗𝑗𝑗.6270, 𝑧𝑧0 = 0.7735 + 𝑗𝑗1.9373

Assume that the load at node m is the same as in Example 6.1. That is,

𝑘𝑘𝑉𝑉𝐴𝐴 =6000,𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿 = 12.47, Power factor =0.8 lagging

Determine the voltages and currents at the source end (node n) for this loading 
condition.



38

ECpE Department

Example 3

[𝑍𝑍𝑢𝑢𝑠𝑠] =
0.7735 + 𝑗𝑗𝑗.9373 0 0

0 0.3061 + 𝑗𝑗0.6270 0
0 0 0.3061 + 𝑗𝑗0.6270

 Ω/𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼

Solution
The sequence impedance matrix is

Performing the reverse impedance transformation results in the approximate phase impedance 
matrix: [𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚] = [𝐴𝐴𝑠𝑠] � [𝑍𝑍𝑠𝑠𝑢𝑢𝑠𝑠] � 𝐴𝐴𝑠𝑠 −1

=
0.4619 + 𝑗𝑗𝑗.0638 0.1558 + 𝑗𝑗0.4368 0.1558 + 𝑗𝑗0.4368
0.1558 + 𝑗𝑗0.4368 0.4619 + 𝑗𝑗1.0638 0.1558 + 𝑗𝑗0.4368
0.1558 + 𝑗𝑗0.4368 0.1558 + 𝑗𝑗0.4368 0.4619 + 𝑗𝑗1.0638

 Ω/𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼

For the 10,000 ft line, the phase impedance matrix and the [b] matrix are

𝑏𝑏 = 𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 �
10000
5280

=
0.8748 + 𝑗𝑗2.0147 0.2951 + 𝑗𝑗𝑗.8272 0.2951 + 𝑗𝑗𝑗.8272
0.2951 + 𝑗𝑗0.8272 0.8748 + 𝑗𝑗𝑗.0147 0.2951 + 𝑗𝑗𝑗.8272
0.2951 + 𝑗𝑗𝑗.8272 0.2951 + 𝑗𝑗𝑗.8272 0.8748 + 𝑗𝑗𝑗.0147

 Ω/𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼
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Example 3
Note in the approximate phase impedance matrix that the three diagonal terms are 
equal and all of the mutual terms are equal. Again, this is an indication of the 
transposition assumption.
From Example 1, the voltages and currents at node m are

𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑚𝑚

 =
277.79∠ − 25.84

277.79∠ − 145.84
277.79∠94.16

 A

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 =
7199.56∠0

7199.56∠ − 120
7199.56∠120

 V

Using Equation (52),

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 = [𝑎𝑎] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚+[𝑏𝑏] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 =
7491.72∠ − 1.73

7491.72∠ − 118.27
7491.72∠𝑗𝑗1.73

 V
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Example 3
Note that the computed voltages are balanced. In Example 1, it was shown that when 
the line is modeled accurately, there is a voltage unbalance of 0.6275%. It should also 
be noted that the average value of the voltages at node n in Example 6.1 was 7491.69 
V.
The Vag at node n can also be computed using Equation (54):

𝑉𝑉𝑎𝑎𝐴𝐴𝑛𝑛 = 𝑉𝑉𝑎𝑎𝐴𝐴𝑚𝑚 +𝑍𝑍+ � 𝐼𝐼𝑎𝑎 + (𝑍𝑍0−𝑍𝑍+)
3

� (𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐)

Since the currents are balanced, this equation reduces to

𝑉𝑉𝑎𝑎𝐴𝐴𝑛𝑛 = 𝑉𝑉𝑎𝑎𝐴𝐴𝑚𝑚 +𝑍𝑍+ � 𝐼𝐼𝑎𝑎 
= 7199.56∠0 + 0.5797 + 𝑗𝑗𝑗.1875 � 277.79∠ − 25.84 = 7491.72∠1.73 V

It can be noted that when the loads are balanced and transposition has been 
assumed, the three-phase line can be analyzed as a simple single-phase equivalent 
as was done in the calculation earlier.
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Example 4
Use the balanced voltages and unbalanced currents at node n in Example 2 and the 
approximate line model to compute the voltages and currents at node m.
Solution
From Example 6.2, the voltages and currents at node n are given as

𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐 𝑛𝑛

 =
249.97∠ − 24.5

277.56∠ − 145.8
305.54∠95.2

 A

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 =
7199.56∠0

7199.56∠ − 120
7199.56∠120

 V

The [A] and [B] matrices for the approximate line model are

𝐴𝐴 = 𝑢𝑢𝐼𝐼𝐼𝐼𝐷𝐷𝑦𝑦 𝑀𝑀𝑎𝑎𝐷𝐷𝑓𝑓𝐼𝐼𝑀𝑀
𝐵𝐵 = [𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚]
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Example 4
The voltages at node m are determined by

𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑚𝑚 = [𝐴𝐴] � 𝑉𝑉𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛−[𝐵𝐵] � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 𝑛𝑛 =
6993.10∠ − 1.63

6881.15∠ − 121.61
6880.23∠𝑗17.50

 V

The voltage unbalance for this case is computed by

𝑉𝑉𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑔𝑔𝑢𝑢 = 6993.10+6881.15+6880.23
3

=6918.16

𝑉𝑉𝑑𝑑𝐼𝐼𝑓𝑓𝐼𝐼𝐷𝐷𝑎𝑎𝐷𝐷𝐼𝐼𝐷𝐷𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = 6993.12 − 6918.17 =74.94

𝑉𝑉𝑢𝑢𝑛𝑛𝑏𝑏𝑎𝑎𝑢𝑢𝑎𝑎𝑛𝑛𝑐𝑐𝑢𝑢 = 74.94
6918.17

 �100% =1.0833%

Note that the approximate model has led to a higher voltage unbalance than the 
“exact” model.
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Distribution System Line Models

The modeling of distribution overhead and underground line segments 
is a critical step in the analysis of a distribution feeder. 

The phase impedance and admittance matrices are needed to build line 
models. (             and             )

How to compute the phase impedance and phase admittance matrices 
using the actual phasing of the line and the correct spacing between 
conductors? 

[𝑍𝑍𝑎𝑎𝑏𝑏𝑐𝑐] [𝑌𝑌𝑎𝑎𝑏𝑏𝑐𝑐]
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Thank You!
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