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Distribution System Line Models — Overview

Highlights of This Section: there are three line segment models
Exact line segment model

Node n la, S lline, S Z.. la,, > Node m
.-I- & AMNN—T & ®
Ib Iline,, 7 } 4 } 7 Ib
Vag, —15 > bb ab ca m Vag,
.+ —@ NN > +. "
I I
Vbg, ﬁﬂ_} % e } Zch % Vbg,,
.+ >— T—’V\/\/\/—"‘"""" > T .
Veg, \l/ J/ [ Veg,,
1 1
1Y =[Y,
- - [{_Cﬂbcln 2 Wasd [‘rcabc]m 2 Wasd

Modified line segment model (neglecting shunt admittance of exact model)
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Distribution System Line Models — Overview

Approximate line segment model (in sequence domain)
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* In this section, we will study how to derive the above three models (from KVL
and KCL), i.e., how to derive forward-backward sweep models.

e Here we will assume [Zabc] and [ Yabc] are known. How to compute the phase
impedance and phase admittance matrices using the actual phasing of the line and
the correct spacing between conductors are discussed in modeling series
impedance and shunt admittance.
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Exact Line Segment Model

The exact model of a three-phase, two-phase, or single-phase overhead
or underground line is shown 1n Fig.1.
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Fig.1 Three-phase line segment model
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Exact Line Segment Model

* When a line segment 1s two phase (V phase) or single phase, some of the
impedance and values will be zero. Note that in all cases the phase impedance
and phase admittance matrices were 3 x 3. Rows and columns of zeros for the
missing phases represent two-phase and single-phase lines. Therefore, one set
of equations can be developed to model all overhead and underground line
segments.

 The values of the impedances and admittances in Fig.1 represent the total
impedances and admittances for the line segment. That 1s, the phase
impedance/admittance matrix has been multiplied by the length of the line
segment.
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Fig.1 Three-phase line segment model
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Exact Line Segment Model

For the line segment of Fig.l, the equations relating the input (node n)
voltages and currents to the output (node m) voltages and currents are
developed as follows.

Kirchhoff's current law applied at node m 1s represented by
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Fig.1 Three-phase line segment model
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Exact Line Segment Model

Iline,| 11, You Yoo Yael [Vag!
Iliney, —[Ib + % Yba Yoo Yocl|:|Vbg (1)
_”inec_ Il Yea Yo Yo _ch_m
In condensed form Equation (1) becomes
. 1
[”lneabc]n:[labc]m + 5" [Yabc] : [VLGabc]m (2)
Kirchhoff's voltage law applied to the model gives
Vag] [Vag| Zoa Zap Zgo1 |Iline,
Vog| =|Vbg| +|Zba Zbp Zpc|-|Iline, 3)
_ch_n _ch_m an Zcb ch _Ilinec_
In condensed form Equation (3) becomes
[VLGabc]n:[VLGabc]m + [Zabc] ) [Ilineabc] (4)
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Exact Line Segment Model
[Ilineabc] :[Iabc]m + % ’ [Yabc] ’ [VLGabc]m (2)

VLGapcln=lVLGapclm + [Zapc] - Hlinegp] (4)
Substituting Equation (2) into Equation (4),
VLGanln=IVLGabclm + (Zane] * {ULanelm + 5 Wane] - [VLGavclm) ()
Collecting terms,
[VLGabc]n:{[u] + % [Zape] - [Yabc]} VLGapclm™Zapel - Uapelm (6)

where

1 0 O
[ul]=10 1 O] (7)
0 0 1
Equation (6) is of the general form
[VLGabc]n:[a] ) [VLGabc]m+[b] ) [Iabc]m (8)
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Exact Line Segment Model

[VLGabc]n:[a] ) [VLGabc]m+[b] ’ [Iabc]m (8)
where .
la] = [u] + 2 ‘[Zapel * [Yapcl (9)
[b] = [Zapc] (10)
The input current to the line segment at node »n 1s
1,7 [lline,] - [Yaa Yap Yac (Vag
[lb = Ilineb + > Yoa Yop Yocl- ng (1 1)
Il |Iline. Yea Yoo Yecl [Vgg

In condensed form, Equation (11) becomes

Uapcln=lllineapc] +5- Yapel - VLGapeln  (12)
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Exact Line Segment Model
[Ilinegpc]l =llapclm + % [Yapel - [VLGapclm (2)
[Iabc]n:[”ineabc] + % ’ [Yabc] ’ [VLGabc]n (12)

Substitute Equation (2) into Equation (12):

[Iabc]n:[labc]m + % ) [Yabc] ’ [VLGabc]m +% ) [Yabc] VLGabc (13)
[VLGabc]n:{[u] + % [ Zapel - [Yabc]} |VLGapelmHZavel - Havelm (6)

Substitute Equation (6) into Equation (13):

[Iabc]n:[labc]m + % ) [Yabc] ) [VLGabc]m (14)

1 1
+§. [Yapcl {{[u] + E VAHE [Yabc]} VLG p el HZape] - [Iabc]m}
Collecting terms in Equation (14),

[Iabc]n:{[yabc] + i ’ [Yabc] ’ [Zabc] ) [Yabc]} ) [VLGabc]m+{[u] + % ’ [Zabc] ’ [Yabc]} ) [ abc]

(15)
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Exact Line Segment Model

[Iabc]n:{[yabc] + % ' [Yabc] ' [Zabc] ’ [Yabc]} ’ [VLGabc]m+{[u] + % ) [Zabc] ' [Yabc]} ’ [Iabc]

(15)
Equation (15) 1s of the form
Uavcln=lc] - VLGapelmtd] - Uanclm (163)
where
1
Backward [C] - [Yabc] + Z ) [Yabc] ’ [Zabc] ’ [Yabc] (17)
sweep equation 1
P d) = [u] + 5 Zape] * [Yase] (18)
[VLGabc]n:[a] ) [VLGabc]m+[b] ) [Iabc]m (8)
Equations (8) and (16) can be put into partitioned matrix form:
VLGabC VLGabC 19
[ abc ] [ ] [ abc ] ( )
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Exact Line Segment Model
[ VLGabc ] [ ] [ VLGabc ] (19)
abc abc
Equation (19) is very similar to the equat1on used in transmission line analysis when
the A, B, C, D parameters have been defined [1]. In the case here the a, b, ¢, d
parameters are 3 X 3 matrices rather than single variables and will be referred to as the
“generalized line matrices.”

Equation (19) can be turned around to solve for the voltages and currents at node m in
terms of the voltages and currents at node n:

[ VLGabc ] [ ]_1 ) [[VLGabc]n] (20)
abc [Iabc]n
The inverse of the a, b, ¢, d matrix is s1mple because the determinant 1s
[a] - [d] - [b] - [¢] = [u] (21)

[1] Glover, J.D. and Sarma, M., Power System Analysis and Design, 2nd edn., PWS Publishing Co., Boston, MA, 1995.
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Exact Line Segment Model

VLGabc 17" . [VLGabc]n
[ abc ] [ [ [Iabc]n ] (20)
[a] - [d] — [B] - [¢] = [u] 1)
Using the relationship of Equat1on (21), Equation (20) becomes
VLGabC —[b VLGabC
[ abc ] [ ] [ abc ] (22)

Since the matrix [a] 1s equal to the matrix [d], Equation (22) in expanded form
becomes

[VLGabc]m = [a] ) [VLGabc]n - [b] ) [Iabc]n (23)

[Iabc]m = —[c] - [VLGabc]n + [d] - [Iabc]n (24)
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Exact Line Segment Model

[VLGabc]n:[a] ) [VLGabc]m + [b] ) [Iabc]m (8)
Sometimes it is necessary to compute the voltages at node m as a function of the
voltages at node n and the currents entering node m. This is useful in the ladder
iterative technique, 1.e., the forward sweep equation.
Solving Equation (8) for the bus m voltages gives

[VLGabc]m:[a]_l' {[VLGabc]n _ [b] ) [Iabc]n } (25)

Equation (25) is of the form

[VLGabc]m:[A] ) [VLGabc]n o [B] ’ [Iabc]m (26)
where [A] = [a] ™} (27)
[B] = [a]~* [b] (28)
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Exact Line Segment Model

The line-to-line voltages are computed by

Vo 1 -1 07 [Yag
Vye =10 1 —11 - ng = [D] - [VLGabc]m (29)
where
1 -1 0
[Dl={0 1 -1 (30)
-1 0 1

Because the mutual coupling between phases on the line segments is not equal, there will be
different values of voltage drop on each of the three phases. As a result the voltages on a
distribution feeder become unbalanced even when the loads are balanced. A common method
of describing the degree of unbalance 1s to use the National Electrical Manufactures
Association (NEMA) definition of voltage unbalance as given in Equation (31) [2].

|Maximum Deviation from Average|

-100%

Vunbalance = | v |
average

[2] ANSI/NEMA Standard Publication No. MG1-1978, National Electrical Manufactures Association, Washington, DC.
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Example 1

A balanced three-phase load of 6000 kVA, 12.47 kV, 0.9
lagging power factor 1s being served at node m of a 10,000 ft
three-phase line segment. The load voltages are rated and
balanced 12.47 kV. The configuration and conductors of the
line segment are those of Example 4.1. Determine the
generalized line constant matrices [a], [b], [c], [d], [4], and
[B]. Using the generalized matrices determine the line-to-
ground voltages and line currents at the source end (node n)
of the line segment.
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Example 1

Solution
The phase impedance matrix and the shunt admittance matrix for the line segment are

0.4576 + j1.0780 0.1560 + j0.5017 0.1535 + j0.3849
[Z.pe] = |0.1560 4+ j0.5017 0.4666 + j1.0482 0.1580 + j0.4236 | Q/mile
0.1535 +j0.3849 0.1580 + j0.4236 0.4615 + j1.0651

j5.6711 —j1.8362 —j0.7033
[Vapel = +376.9911 - [Cop.] = |—j1.8362  j5.9774 —j1.1690| uS/mile
—j0.7033 —j1.1690 j5.3911

For the 10,000 ft line segment, the total phase impedance matrix and shunt admittance matrix
are
0.8667 + j2.0417 0.2955 +0.9502 0.2907 + j0.7290
[Zpc] = [0.2955 +0.9502 0.8837 +1.9852 0.2992 + j0.8023 | Q
0.2907 +j0.7290 0.2992 +;0.8023 0.8741 + j2.0172

j10.7409 —j3.4777 —j1.3322
(Yo = |—j3.4777 j11.3208 —j2.2140|us
—j1.3322 —j2.2140 j10.2104
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Example 1

It should be noted that the elements of the phase admittance matrix are very small.

The generalized matrices computed according to Equations (9), (10), (17), and (18) are
1 0 O

0 1 O]

0 0 1

0.8667 + j2.0417 0.2955 + j0.9502 0.2907 + j0.7290
[b] = [Zgpe] = |0.2955 + j0.9502 0.8837 + j1.9852 0.2992 + j0.8023
0.2907 +j0.7290  0.2992 + j0.8023  0.8741 + j2.0172

la] = [u] + 5" [Zabc] : [Yabc]:

0 0 O] 1 0 O 1 0 O
[C]:[O 0 O [d]Z[O 1 0 [A]I=[0 1 O‘
0 0 O 0 0 1 0 0 1

0.8667 + j2.0417 0.2955 + j0.9502 0.2907 + j0.7290
[B] = [a]~*- [b] = [0.2955 + j0.9502 0.8837 +j1.9852 0.2992 + j0.8023
0.2907 + j0.7290 0.2992 + j0.8023 0.8741 + j2.0172

Because the elements of the phase admittance matrix are so small, the [a], [4], and [d] matrices appear to
be the unity matrix.
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Example 1

If more significant figures are displayed, the 1,1 element of these matrices 1s

;1 = Arq = 0.99999117 + j0.00000395
Also, the elements of the [¢] matrix appear to be zero. Again 1f more significant
figures are displayed, the 1,1 term 1s

c11 = —0.0000044134 + j0.0000127144

The point here 1s that for all practical purposes the phase admittance matrix can be
neglected. The magnitude of the line-to-ground voltage at the load is

G = 12470 _ 7199.56
NG :

Selecting the phase a to ground voltage as reference, the line-to-ground voltage matrix

at the load 1s Vag 7199.5620
Vbg =[7199.564— 120|V
Veg| L 7199562120
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Example 1

The magnitude of the load current 1s
6000

I, =
=75 1247
For a 0.9 lagging power factor the load current matrix is

= 277.79

277.792 — 25.84
[ pc]m=1277.792 — 145.84
277.79,94.16

A

The line-to-ground voltages at node n are computed to be

7538.7021.57
[VLG g ]n=[2] - [VLGgpe1m+Ib] - [Uapelm=|7451.252 — 118.30
7485.112121.93

v
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Example 1

It is important to note that the voltages at node n are unbalanced even though the voltages and
currents at the load (node m) are perfectly balanced. This is a result of the unequal mutual
coupling between phases. The degree of voltage unbalance is of concern since, for example, the
operating characteristics of a three-phase induction motor are very sensitive to voltage
unbalance. Using the NEMA definition for voltage unbalance (Equation (29)), the voltage
unbalance is given by

. Vagl +[Vbgl +|Vegl, _ 7538.70+7451.25+7485.11

Vaverage| = . = - =7491.69

Vdeviation,,,, = 7538.70 — 7491.69 = 47.01

Vinbatance = moerr= +100%=0.6275%

Although this may not seem like a large unbalance, it does give an indication of how the unequal
mutual coupling can generate an unbalance. It is important to know that NEMA standards require
that induction motors be derated when the voltage unbalance exceeds 1.0%.
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Example 1

Selecting rated line-to-ground voltage as base (7199.56) the per-unit voltages at bus n
are

Vag 7538.7021.57 1.047121.57
Vhgl = —oosc | 7451.252 — 118.30(=|1.03504 — 118.30| p.u.
Veg ' 7485.11,121.93 1.03972121.93

n

By converting the voltages to per unit, it 1s easy to see that the voltage drop by phase is
4.71% for phase a, 3.50% for phase b, and 3.97% for phase c.
The line currents at node n are computed to be

277.714 — 25.83
[Iabc]n:[c] ) [VLGabc]m+[d] ) [Iabc]m: 277.734 — 148.82
277.73494.17

A

Comparing the computed line currents at node n to the balanced load currents at node
m, a very slight difference 1s noted that is another result of the unbalanced voltages at
node n and the shunt admittance of the line segment.
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Modified Line Model

It was demonstrated in Example 1 that the shunt admittance of an overhead line is so
small that it can be neglected. Figure 2 shows the modified line segment model with the

shunt admittance neglected.

When the shunt admittance is neglected, the generalized matrices become

a] = [u] (32) d] = [u] (35)
b] = [Zane]  (33) A] = [u] (36)
c] =[0] (34) B] = [Z,,.] (B7)

Node n la,, S H_}me Zoa la,, S Node m
®; K
Vﬂga Ib% Hmeb Zys }Zab }Zm ib,, .Vagm

Vb;ﬁ. 7. ﬂme J I, Jbgm
o "
Veg, Veg,,
ment model
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Three-Wire Delta Line

If the line 1s a three-wire delta, then the voltage drops down the line must be in terms of the line-
to-line voltages and line currents. However, it 1s possible to use “equivalent” line-to-neutral
voltages so that the equations derived to this point will still apply. Writing the voltage drops in
terms of line-to-line voltages for the line in Figure 2 results in

Vab Vab vdrop, vdrop,, (3 8)
Vocl =1|Vpe| =+ |vdrop,|—|vdrop,
Vea n Vea m vdrop, vdropg
where
vdropg Zaa Zaa Zaa Iline,
vdroppy | = Zaa Zaa Zaal - |Iline, (39)
vdrop, Z,q Zaa Zaal |Iline,
Node n la, > H_:’s'nea Zeu la,, > Node m
o = l AA—N -®
1 Iline 7 Ib
Va n b Zpp Zab} ca m Vag
T . >
Vbg Cx ine, 7z } szJ Ic, Vg,
' ANAN—A E ]
Veg, Veg,,

Fig.2 Modified line segment model
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Three-Wire Delta Line
Vb Vb vdrop, vdropy,
Vol =1Vbc| +|vdrop,| —|vdrop, (38)
Vead,,  LWWeql,,  |vdrop, vdrop,

Expanding Equation (38) for the phase a—b,

Vab,, = Vab,, +vdrop, —vdrop, (40)
but
Vab, = Van, —Vbn, Vab,, = Van,, —Vbn,, (41)
Substitute Equations (41) into Equation (40):
Van,, —Vbn, =Van,, — Vbn,, + vdrop, —vdrop, (42)

Equation (42) can be broken into two parts in terms of “equivalent” line-to-neutral voltages:
Van, = Van,, + vdrop, Vbn, = Vbn,, + vdrop, (43)

The conclusion here is that it is possible to work with “equivalent” line-to-neutral voltages in a
three-wire delta line. This is very important since it makes the development of general
analyses techniques the same for four-wire wye and three-wire delta systems.
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Computation of Neutral and Ground Current

The Kron reduction method was used to reduce the primitive impedance matrix to the 3 x 3 phase
impedance matrix. Fig.3 shows a three-phase line with grounded neutral that is used in the Kron
reduction. Note that the direction of the current flowing in the ground is shown in Fig.3.

ey

® NS =D - »
+ —> fy > 3 N
Vag zbb a ac Vag
= T T b
b » - . :
ng Zee szJ | Zbn >. Zan ng
o E ]
- > -
Vv Ir: A % y
g Zun cn ch
Z
+ — In +)
V, Ving

NN N N N N RN N N N The NN N N R N N N N N

4
Fig.3 Three-phase line with neutral and ground currents (Note the main differences between

this figure and the modified line mode in Fig.2: (1) the impedances here are primitive
impedances and neutral conductor is in the figure and (2) the impedances in Fig. 2 are phase
impedances that have already considered neutral conductor effect )
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Computation of Neutral and Ground Current

In the development of the Kron reduction method, Equation (44) defined the “neutral transform
matrix” [z, ].

[tn] — _[ZAnn]_l ) [ZAnj] (44)

The matrices [Z,,] and [2n j]are the partitioned matrices in the primitive impedance matrix.

When the currents flowing in the lines have been determined, Equation (45) is used to compute
the current flowing in the grounded neutral wire(s):

[In] - [tn] ) [Iabc] (45)

In Equation (45), the matrix [I,]for an overhead line with one neutral wire will be a single
element. However, in the case of an underground line consisting of concentric neutral cables or
taped shielded cables with or without a separate neutral wire, [I,,] will be the currents flowing
in each of the cable neutrals and the separate neutral wire if present. Once the neutral current(s)
has been determined, Kirchhoff's current law 1s used to compute the current flowing in ground:

Ig = —(Ia + Ib + IC + In1 + Inz + -+ Ink) (46)
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Example 2

The line of Example 1 will be used to supply an unbalanced load at node m. Assume

that the voltages at the source end (node n) are balanced three phase at 12.47 kV line
to line. The balanced line-to-ground voltages are

7199.5620
[VLGapcln = [7199.564 — 120
7199.562120

The unbalanced currents measured at the source end are given by

I, 24997/ — 24.5
Iy| = |277.562 — 145.8
Determine Il 305.54,95.2

*The line-to-ground and line-to-line voltages at the load end (node m) using the
modified line model

*The voltage unbalance
*The complex powers of the load
*The currents flowing in the neutral wire and ground

IOWA STATE UNIVERSITY ECpE Department
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Example 2

Solution
The [A4] and [B] matrices for the modified line model are

1 0 O
[A] = [u] = [O 1 O]
0 0 1

0.8667 + j2.0417  0.2955 + j0.9502 0.2907 + j0.7290]
[B] = [Zae] = |0.2955 +j0.9502 0.8837 +j1.9852 0.2992 + j0.8023| Q
0.2907 +j0.7290  0.2992 +j0.8023 0.8741 + j2.0172

Since this 1s the modified line model, [ is equal to [/ ;.],. Therefore

abc

249.972 — 24.5
277.564£ — 145.8| A
305.54£95.2

The line-to-ground Voltages at the load end are

[VLGabc]m = [A] - [VLGabc]n —[B] - [Iabc]m

=16918.352 — 121.55|V

l 6942.532 — 1.47
6887.712117.31
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Example 2

The line-to-line voltage at the load end are

1 -1 0
Dl=]l0 1 -1
-1 0 1

12,008228.4
[VLL pelm = [D] - [VLGgpelm= [12,0254 —92.2
11,9032148.1

v

For this condition, the average load voltage 1s

6942.53+6918.35+6887.71

|Vaverage| = 3 =6916.20

The maximum deviation from the average is on phase ¢ so that
Vderivation,,,, = |6887.71 — 6916.20| =28.49

Vinbatance = morams *100% =0.4119%
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Example 2

The complex powers of the load are

S, ] Vag *la] [1597.2 + j678.8]
Sp| === -|Vbg " 15| = [1750.8 + j788.7| kW + jkvar
Sc V., -1z|  |1949.7 +792.0

The “neutral transformation matrix” from Example 4.1 is

[t, ]= [-0.4292 —j0.1291 -—-0.4476 —j0.1373 —0.4373 —j0.1327]
The neutral current is
L, 1= [tn ] Uapelm = 26.224 — 29.5
The ground current is

Iy =—(g+1 + 1, +1;) =3252—77.6
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Approximate Line Segment Model

* The approximate line model can be developed by applying the “reverse impedance
transformation” from symmetrical component theory.

* Using the known positive and zero sequence impedances, the “sequence impedance
matrix” 1s given by (See Chapter 4, Kersting)

Z, 0 0
[Zseq] =0 Z, O (47)
0 0 Z,|

* Note that this assumption means lines are assumed to be transposed, that is why
this model is called “approximate” model.

* The “reverse impedance transformation” results in the following approximate
phase impedance matrix:

[Zapprox] = |Aq] - [Zseq] . [AS]_l (48)
1 (2Z4+Zy)  (Zo—Zy)  (Zo—Z4) |

[Zapprox] — § | Go—2y) (2Zi+Zy) (Zo—Z4) (49)
| (Zo—2y)  (Zo—2y) (2Z,+Zy))
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Approximate Line Segment Model

Notice that the approximate impedance matrix i1s characterized by the three diagonal
terms being equal and all mutual terms being equal. This 1s the same result that 1s
achieved 1f the line 1s assumed to be transposed. Applying the approximate
impedance matrix the voltage at node n 1s computed to be

Vag Vag " (2Z++Z0) (ZO_Z+) (ZO_Z+) Ia 50
Vog| =|Vog| +35| Zo=24) (Zi+Zo) (Zo=Z4) |- |Ib (50)
Vegl, Vgl (Zo=Zy)  (Zo=Zy) (2Zy+Zy)| LUl

In condensed form, Equation (50) becomes

VLG apeln = [VLGapelm + [Zapprox] * Uavelm (51)
Note that Equation (51) is of the form
[VLGabc]n — [a] ) [VLGabc]m+[b] ) [Iabc]m (52)

where , ,
[A] = unity matrix

[b] = [Zapprox]
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Approximate Line Segment Model

Vig Vag | @2et20)  (Zo=Z4)  (Zo—Z4) | [la
Vog| =|Vbg T3 (Zo—Z2y) (2Z4+Zo) (Zo—=Z4) |- |Ip (50)
Veg . Veg . (Zo—=2y) (Zo—2:) (2Z,+Zp)] Llicl,

Equation (50) can be expanded and an equivalent circuit for the approximate line
segment model can be developed. Solving Equation (50) for the phase a voltage at
node n results in

Vagn = Vagn ++ - {QRZe+Zo)la + (Zo—=Z)ly + (Zo+Z,)1c} (53)

Modify Equation (53) by adding and subtracting the term (Z, — Z,)/, and then
combining terms and simplifying:
_ 1 ((RZy+Zo)lg + (Zo—Z: )1y + (Zo+Z ),
=Vagm +§ ABZ)I + (Zo—Z)Ug + 1 + 1)}

=Vag, +Z, - I, + (Z";Z” (I, + 1, + 1) (54)
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Approximate Line Segment Model

The same process can be followed in expanding Equation (50) for phases b and c. The final
results are (Zo—Z4)

ngn :ngm +Z+ 'Ib + '(Ia-l_lb +IC) (55)
Veg, =Vegy +Z4 I, + S22 (1 41, + 1)
In = Im + Ic 3 a b c (56)
Fig.4 illustrates the approximate line segment model.
Node n 7 — | Node m
P JV\N\/_*rYYv\ PY
Vag, 7 —_— Vag,,
P WW;NM ®
ngn Z+ % ‘rc ngm
.—WW_I‘Y'Y'W @
- -
Ve (Zy-Z)3 €—— (s Ipl) ' Em _ _
® I\/V\/\,_fWY'\ )

Fig.4 Approximate line segment model
Fig.4 shows a simple equivalent circuit for the line segment since no mutual coupling has to be

modeled. It must be understood, however, that the equivalent circuit can only be used when
transposition of the line segment has been assumed.
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Example 3

The line segment of Example 1 is to be analyzed assuming that the line
has been transposed. In Example 1, the positive and zero sequence
impedances were computed to be

z, =0.3061 +j0.6270,z, = 0.7735 + j1.9373

Assume that the load at node m 1s the same as in Example 6.1. That is,

kVA =6000,kVLL = 12.47, Power factor =0.8 lagging

Determine the voltages and currents at the source end (node n) for this loading
condition.
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Example 3

Solution
The sequence impedance matrix is
0.7735 + j1.9373 0 0
[Zeq] = 0 0.3061 + j0.6270 0 Q/mile
0 0 0.3061 + j0.6270

Performing the reverse impedance transformation results in the approximate phase impedance

matrix: [Zapprox] = [Aq] - [Zseq] : [As]_l
0.4619 + j1.0638 0.1558 +j0.4368 0.1558 + j0.4368
= |0.1558 +;0.4368 0.4619 + j1.0638 0.1558 + j0.4368| Q/mile
0.1558 +0.4368 0.1558 +;j0.4368 0.4619 + j1.0638

For the 10,000 ft line, the phase impedance matrix and the [0] matrix are
10000
[b] = |Zapprox] 5280
0.8748 + j2.0147 0.2951 +;0.8272 0.2951 + j0.8272
= 10.2951 +;0.8272 0.8748 + j2.0147 0.2951 +j0.8272| Q/mile
0.2951 +,0.8272 0.2951 +;0.8272 0.8748 +j2.0147
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Example 3

Note in the approximate phase impedance matrix that the three diagonal terms are
equal and all of the mutual terms are equal. Again, this 1s an indication of the
transposition assumption.

From Example 1, the voltages and currents at node m are

7199.56.£0
[VLG 1] = [7199.564 —120|V
7199.56.,120
Iq 277.792 — 25.84
[Ib] = [277.794 — 145.84| A
I 277.792494.16

C'm

Using Equation (52),
7491.722 — 1.73
(VLG pcln = [a] - VLG gpelm+[P] - Ugpelm = |7491.722 — 118.27
7491.722121.73
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Example 3

Note that the computed voltages are balanced. In Example 1, it was shown that when
the line 1s modeled accurately, there is a voltage unbalance of 0.6275%. It should also
be noted that the average value of the voltages at node n in Example 6.1 was 7491.69
V.

The V,, at node n can also be computed using Equation (54):

Vagy =Vagm +Z - Io + 2222 (I, + 1, + 1)

Since the currents are balanced, this equation reduces to

Vag, =Vag, +Z, -1,
= 7199.56£0 + (0.5797 + j1.1875) - 277.794 — 25.84 = 7491.72£1.73 V

It can be noted that when the loads are balanced and transposition has been
assumed, the three-phase line can be analyzed as a simple single-phase equivalent
as was done in the calculation earlier.

IOWA STATE UNIVERSITY ECpE Department



Example 4

Use the balanced voltages and unbalanced currents at node # in Example 2 and the

approximate line model to compute the voltages and currents at node m.
Solution

From Example 6.2, the voltages and currents at node n are given as

7199.56.0
[VLGpc ], = l7199.564 —120(V
7199.56,120
Iy 249.972 — 24.5
[Ib] = [277.564 — 145.8| A
Il 305.54,95.2

The [4] and [B] matrices for the approximate line model are
[A] = unity matrix

[B] = [Zapprox]

IOWA STATE UNIVERSITY ECpE Department



Example 4

The voltages at node m are determined by
6993.102 — 1.63
VLG pclm = [A] - VLG pelnn—[B] * Ugpeln = [6881.152 — 121.61
6880.232117.50

v

The voltage unbalance for this case is computed by

6993.10+6881.15+6880.23
Vaverage = > =6918.16

Vderivation,,,, = |6993.12 — 6918.17| =74.94

Vinbatance = moronz 100% =1.0833%

Note that the approximate model has led to a higher voltage unbalance than the
“exact” model.
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Distribution System Line Models

The modeling of distribution overhead and underground line segments
1s a critical step 1n the analysis of a distribution feeder.

The phase impedance and admittance matrices are needed to build line
models. ([Z ] and [Ygpc])

How to compute the phase impedance and phase admittance matrices
using the actual phasing of the line and the correct spacing between
conductors?
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Thank Youl!
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